Astérisque, n° 436. The Yang-Mills heat flow and the caloric gauge
search

Astérisque, n° 436. The Yang-Mills heat flow and the caloric gauge

Oh, Sung-Jin - Tataru, Daniel
This is the first part of the four-paper sequence, which establishes the Threshold Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equa... lire la suite
  • 38,00 €

Quantité

Vous êtes professionnels, vous souhaitez bénéficier de tarifs qui vous sont réservés ?
connecter vous ou créer vous un compte

Vous êtes professionnels, vous souhaitez bénéficier de tarifs qui vous sont réservés ? Connectez-vous ou créez vous un compte

This is the first part of the four-paper sequence, which establishes the Threshold Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equation in the (4 + 1)-dimensional Minkowski space-time.

The primary subject of this paper, however, is another PDE, namely the energy critical Yang-Mills heat flow on the 4-dimen- sional Euclidean space. Our first goal is to establish sharp criteria for global existence and asymptotic convergence to a flat connection for this system in ?1, including the Dichotomy Theorem (i.e., either the above properties hold or a harmonic Yang-Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial energy is less than twice that of the ground state, then the above properties hold). Our second goal is to use the Yang-Mills heat flow in order to define the caloric gauge, which will play a major role in the analysis of the hyperbolic Yang-Mills equation in the subsequent papers.

9782856299616
100000 Produits

Auteur : Oh, Sung-Jin
Tataru, Daniel

Date de parution : 18/11/2022

Éditeur : Société mathématique de France