Frais de port offerts dès 30 € d’achat (France Métropolitaine)

Frais de port offerts dès 30 € d’achat (France Métropolitaine)
Votre panier est vide
This is the first part of the four-paper sequence, which establishes the Threshold Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equation in the (4 + 1)-dimensional Minkowski space-time.
The primary subject of this paper, however, is another PDE, namely the energy critical Yang-Mills heat flow on the 4-dimen- sional Euclidean space. Our first goal is to establish sharp criteria for global existence and asymptotic convergence to a flat connection for this system in ?1, including the Dichotomy Theorem (i.e., either the above properties hold or a harmonic Yang-Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial energy is less than twice that of the ground state, then the above properties hold). Our second goal is to use the Yang-Mills heat flow in order to define the caloric gauge, which will play a major role in the analysis of the hyperbolic Yang-Mills equation in the subsequent papers.
Auteur :
Oh, Sung-Jin
Tataru, Daniel
Date de parution : 18/11/2022
Éditeur : Société mathématique de France
(France Métropolitaine)
07400 Le Teil (Ardèche)
Carte bancaire
06 70 63 29 00
check_circle
check_circle
Vous devez être connecté pour enregistrer des produits dans votre liste de souhaits.