Frais de port offerts dès 30 € d’achat (France Métropolitaine)

Frais de port offerts dès 30 € d’achat (France Métropolitaine)
Votre panier est vide
Cet ouvrage présente une nouvelle formulation équivalente, dite «factorisée», pour des problèmes aux limites pour des équations aux dérivées partielles linéaires elliptiques : il reprend pour cela la méthode du plongement invariant de Richard Bellman, bien connue pour obtenir la synthèse du contrôle optimal en boucle fermée, et l'applique à la résolution des problèmes aux limites, mais spatialement. On obtient ainsi une formulation composée de deux problèmes de Cauchy découplés ainsi qu'une équation de Riccati pour des opérateurs de type Dirichlet-Neumann.
Après avoir présenté et justifié le calcul formel de factorisation sur un «cas modèle» volontairement simple, le domaine d'utilisation de cette méthode est exploré, et notamment son application dans des situations plus complexes. Ainsi, sur une version discrétisée du problème, le lien est établi entre le plongement invariant et la factorisation de Gauss.
Enfin, l'ouvrage étudie la façon dont la méthode de factorisation peut s'étendre à d'autres équations linéaires classiques de type elliptique et à la factorisation QR.
Auteur :
Henry, Jacques (1947-....)
Ramos, Angel Manuel
Date de parution : 13/04/2016
Éditeur : Iste éditions
Collection : Mathématiques et statistiques
Classification : Mathématiques
(France Métropolitaine)
07400 Le Teil (Ardèche)
Carte bancaire
06 70 63 29 00
check_circle
check_circle