Frais de port offerts dès 30 € d’achat (France Métropolitaine)
- Nouveau
- hors stock

Frais de port offerts dès 30 € d’achat (France Métropolitaine)
Votre panier est vide
Le but principal du présent manuscrit est d'étudier la théorie d'Iwasawa pour les familles semi-ordinaires de formes automorphes sur GL2 x ResK/QGL1, où K est un corps quadratique imaginaire dans lequel le nombre premier p est inerte. Nous démontrons des résultats de divisibilité en vue des conjectures principales d'Iwasawa dans ce contexte, en utilisant la procédure de factorisation signée optimisée pour les fonctionnelles de Perrin-Riou et les éléments de Beilins on-Flach pour une famille de produits de Rankin-Selberg de formes p-ordinaires avec une forme modulaire p-non-ordinaire fixée. L'optimalité permet un contrôle effectif sur les µ-invariants des groupes de Selmer et des fonctions L p-adiques lorsque les formes modulaires varient en familles, ce qui est crucial pour notre argument de recollement visant à établir une divisibilité dans une conjecture principale d'Iwasawa à trois variables.
Our primary goal in this manuscript is to study the Iwasawa theory for semi-ordinary families of automorphic forms on GL2 x ResK/QGL1, where K is an imaginary quadratic field where the prime p is inert. We prove divisibility results towards Iwasawa main conjectures in this context, utilizing the optimized signed factorization procedure for Perrin-Riou functionals and Beilinson-Flach elements for a family of Rankin-Selberg products of p-ordinary forms with a fixed p-non-ordinary modular form. The optimality enables an effective control on the µ-invariants of Selmer groups and p-adic L-functions as the modular forms vary in families, which is crucial for our patching argument to establish one divisibility in an Iwasawa main conjecture in three variables.
Auteur :
Büyükboduk, Kâzim
Lei, Antonio
Date de parution : 05/06/2025
Éditeur : Société mathématique de France
Classification : Mathématiques
(France Métropolitaine)
07400 Le Teil (Ardèche)
Carte bancaire
06 70 63 29 00
check_circle
check_circle
Vous devez être connecté pour enregistrer des produits dans votre liste de souhaits.